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Abstract:

A well-known result in quasigroup theory says that an associative quasigroup is a group, 1.€. in
quasigroups, associativity forces the existence of an identity element. The converse is, of course,
far from being true, as there are many, many non-associative loops. However, a remarkable theorem
due to David Mumford and C.P. Ramanujam says that in a projective variety V, if a binary law of
composition m merely possessed a 2-sided identity m(x, e) = m(e, x) = x, then m must also have
an inverse and satisfy the associative law, hence make V into a group. Motivated by this result, we
define a universal algebra (A; F) to be an MR-algebra if whenever a binary term-function m(x, y)
admits a two-sided identity, then the reduct (A, m(x, y)) must be associative. Here we give some
non-trivial varieties of quasigroups, groups, rings, fields and lattices which are MR-algebras. For
example, every MR-quasigroup must be isotopic to a group, MR-groups are exactly the nilpotent
groups of class 2, while commutative rings and complemented lattices are MR-algebras if and only
if they are Boolean.
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C. P. Ramanujam proved that if a binary operation m in a complete
variety X merely possessed a 2-sided 1dentity then m must have an
inverse and satisfy the associative law, hence make X into a group !
We look at this as a formal implication:

m(x, e) = m(e, x) = x implies m(m(x, y), z) = m(x, m(y, 2)).
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Some examples of binary algebras having a two-sided
1dentity and inverse but not associative

1. The most famous non-associative Moufang loop 1s the
multiplicative loop of real octonions.

2. The binary algebra (R ; *) where x*y=x+y+x?yis a
polynomially defined algebra having a 2-sided 1dentity but
not associative.

3. The binary algebra (N ; *) where x*y = xY y* 18
commutative, has a 2-sided 1dentity but not associative.
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Here O is the identity, and the inverses are 0, 3,4, 1,2, 6, 5,7 for
0...7 respectively. Consider 1 o 1 o 2 to show non-associativity

and 1 o 2 for non-commutativity.
®



Department of Mathematics University Manitoba
Rings and Modules Seminar Series 07 March 2023

Theorem.
Letx ®y =ax? + hxy + by’ + fx + gy + c in k[x, y] for some infinite
field k. If @ admits a two-sided 1dentity, then 1t 1s associative.

Proof.
Letx ®e=e®x = xforsomeeink Nowx + e =Xximplies that
ax’ + hxe + be’ + fx + ge + ¢ = x. Since k is an infinite field, we have
a=0, he+f=1 and similarly, b =0, he + g = 1. In particular, we get
f = g. Rewriting the binary operation @ in its new simplified form
we havex @y = axy + bx + by + c. for some a, b, c in k.
and alsoae + b =1and be +c=0.1lfa =0, then b =1 and x ® y is the
usual addition which is, of course, is associative. Let now a # 0. Then
¢ =—be = -bae/a = —b(1-b)/a = (b° — b)/a. Thus we have the final form
x®y=axy+bx+by+ (b°-b)ha.
(x Dy) Dz =a*xyz + ab(xy+yz+zx) + b°(x+y+z) + bc+c
which is symmetric in x, y and z. So + is associative.

o
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In simple terms, Rigidity Lemma (see p 44 - 45) says that under certain
circumstances “a 2-variable function f (X, y) that 1s independent of x for
one value of y 1s independent of x for all y.

Key steps of the proof (for complete details, see pages 45-46 of [9].

Let A be the projective curve. Define f:A x A—> A x A by the rule
f(x,y) = (xy, y). Now {(e, €) = (e, €). Conversely, if {(Xx, y) = (e, €), then
(Xy, y) = (e, €) which, 1n trun, implies that x=e, y=e. In other words,
f-1(e, €) = {(e, e)}.Using this and the fact we have a projective curve,
CPR proves that the mapping 1s onto and thus captures the inverse, y'
from (Xxy, y) = (e,y) for some x 1.€. given y, the equation xy=e 1s soluble
for x so that we have x’x = e. Then he goes on to prove other familiar
properties like y" =y, yy' = e etc. Next, he uses the rigidity lemma to the
binary term-function x’(xy) to conclude that x’(xy) =y. Finally, applying

rigidity to the ternary term function x(x’y)z) he gets full associativity.
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Let ¥ + y* = 1 be the unit circle equation and Pi(z1,y1) and Pe(x2,y2) b
points on this circle. We have

(1,y1) = (sin(ay),cos(ay)), (x9,y2) = (sin(as), cos(as))

and thus this addition is given by

r3 = sin(a; + as) Y A (_()’ 1) Identity element
= sin(ay)cos(as) + cos(aq)sin(as) P = (a;h yl)
= T1ys + Y122
Y3 = cos(aq + ) Py = (‘L‘Za yZ)
> X

= cos(ay)cos(ag) — sin(aq)sin(ay)

= Y1Yg — T1L9 P3 g (173: l/ﬂ)
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Group Law on Unit Circle
r3 = sm(ag + a9)
= sin(aq) cos(ag) + cos(aq ) sin(a2)

T1Y2 + T2Y1

Y3 cos(a1 + a9)

= cos(aq) cos(ag) + sin(aq ) sin(as)

Y192 — L1122
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As introduced in the previous section, when dx1x9y1ys # %1, the group law
on Edwards curves is given in the next algorithm:

Group law algorithm 3.2. Let E; be an Edwards curve given by:
Ey ::U2+y2 = 1+al:1:2y2

Let Py = (xo,y0) € E4, then —Py = (—x0,v0). Now, let P, + P, = P3 with
P, = (x4,y;) € Eq fori=1,2,3. Then:

T1Y2 + T2Y1 Y1Y2 — T1X9 )

1, Y1 o, Y2 ) — \(r3,Ys :( .
( )+ ) = ( ) 1 +drizov1y2 1 — dz122Y1Y2

Here, the point (0,1) is the identity element and —(x1,y1) = (—x1,¥y1),

Since the binary rational + has a two-sided i1dentity, viz. (0,1), by
Mumford-Ramanujam , the addition 1s associative.

10
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Group Law on Edwards Curves

Projective homogeneous coordinates [edit]

In the context of cryptography, homogeneous coordinates are used to prevent field inversions that appear in
the affine formula. To avoid inversions in the original Edwards addition formulas, the curve equation can be
written in projective coordinates as:

(X? +Y*Z* = Z* +dX*Y*.
A projective point (X : Y : Z) corresponds to the affine point (X /Z : Y/ Z) on the Edwards curve.
The identity element is represented by (0 : 1 : 1). Theinverseof (X : Y : Z)is (=X : Y : Z).

The addition formula in homogeneous coordinates is given by:

(X1:Y1:Z0) + (Xo: Yo : Zo) = (X3 : Vs : Z3) Here the pomnt N = (0,1,1) 1
the 1dentity. Let us verify:
where
X3 = Z1Z:(X1Ys + XoY1)(22 22 — dX, X, Y1 Y- xy,2)+ (0,11
3 = Z2122(X1Ys + XoY1)(272Z; — dX1 X2Y1Y3) = (x22, y22, 23) = (X, V, 7).
Ys = Z12,(N1Y> — X1 X5)(Z7 Z35 + dX1 X, 11Y5) Hence the operation defined
Zy = (2272 —dX1 Xo 1 Y2)(Z2Z2 + dX1 Xo V1 Y5) on the left 1s associative.

11
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